技術支持
來源:光虎
可見光譜是人的視覺可以感受的光譜。如白光經棱鏡或光柵色散后呈紅、橙、黃、綠、藍、靛、紫彩帶,即為可見連續(xù)光譜。在可見區(qū)也有線光譜及帶狀光譜。是整個電磁波譜中極小的一個區(qū)域。
整個電磁波譜包括了無線電波、紅外線、紫外線以及X射線等。它們的波長不同,其中波長在400~760納米之間就是一般的可見光。
可見光的主要天然光源是太陽,主要人工光源是白熾物體(特別是白熾燈)。它們所發(fā)射的可見光譜是連續(xù)的。氣體放電管也發(fā)射可見光,其光譜是分立的。常利用各種氣體放電管加濾光片作為單色光源。
人眼可以看見的光的范圍受大氣層影響。大氣層對于大部分的電磁波輻射來講都是不透明的,只有可見光波段和其他少數如無線電通訊波段等例外。不少其他生物能看見的光波范圍跟人類不一樣,例如包括蜜蜂在內的一些昆蟲能看見紫外線波段,對于尋找花蜜有很大幫助。
光譜中并不能包含所有人眼和腦可以識別的顏色,如棕色、粉紅、紫紅等,因為它們需要由多種光波混合,以調整紅的濃淡。
可見光的波長可以穿透光學窗口,也就是可穿透地球大氣層而衰減不多的電磁波范圍(藍光散射的情況較紅光為嚴重,這也正是為何我們看到天空是藍色的)。人眼對可見光的反應是主觀的定義方式(參見CIE),但是大氣層的窗口則是用物理量測方式來定義。之所以稱為可見光窗口是因為它正好涵蓋了人眼可見的光譜。近紅外線(NIR)窗口剛好在人眼可見區(qū)段之外,中波長紅外線(WMIR)和遠紅外線(LWIR、FIR)則較人眼可見區(qū)段較遠。
可見光譜成像系統(tǒng),它包括光源系統(tǒng)、分光系統(tǒng)、圖像成像及記錄系統(tǒng)、圖像分析及處理系統(tǒng)等幾個部分,由光學物鏡、液晶可調濾光片(LCTF)、CCD照相機、光源和計算機等裝置構成,其核心器件是液晶可調濾光片,它的功能類似于一個高質量的帶通式干涉濾光鏡。隨著電控液晶調節(jié)方法的采用,解決了通光面內的均勻性、峰值光譜透過率以及帶外抑制等問題,體現(xiàn)出精度高、易于實時控制等優(yōu)點,對光譜成像技術的應用起到了積極的推動作用。
可見光譜成像系統(tǒng)的商業(yè)儀器,主要有美國CRI公司的Nuance多光譜成像儀和美國ChemImage公司的Condor高光譜成像系統(tǒng),該系統(tǒng)光譜工作范圍是410nm~720nm,光譜分辨率小于10nm,成像視場約為260mmx250mm,并通過光學元件來增大視場。此外,國內徐曉軒、沈志學等人也設計并研制出了具有結構簡單、高空間分辨率和較高光譜分辨率的可見光液晶光譜成像系統(tǒng)。
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜,又稱分子振動光譜或振轉光譜。
紅外光譜的分區(qū)
通常將紅外光譜分為三個區(qū)域:近紅外區(qū)(0.75~2.5μm)、中紅外區(qū)(2.5~25μm)和遠紅外區(qū)(25~300μm)。一般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬于分子的基頻振動光譜;遠紅外光譜則屬于分子的轉動光譜和某些基團的振動光譜。
由于絕大多數有機物和無機物的基頻吸收帶都出現(xiàn)在中紅外區(qū),因此中紅外區(qū)是研究和應用最多的區(qū)域,積累的資料也最多,儀器技術最為成熟。通常所說的紅外光譜即指中紅外光譜。
紅外光譜對樣品的適用性相當廣泛,固態(tài)、液態(tài)或氣態(tài)樣品都能應用,無機、有機、高分子化合物都可檢測。此外,紅外光譜還具有測試迅速,操作方便,重復性好,靈敏度高,試樣用量少,儀器結構簡單等特點,因此,它已成為現(xiàn)代結構化學和分析化學最常用和不可缺少的工具。紅外光譜在高聚物的構型、構象、力學性質的研究以及物理、天文、氣象、遙感、生物、醫(yī)學等領域也有廣泛的應用。
紅外吸收峰的位置與強度反映了分子結構上的特點,可以用來鑒別未知物的結構組成或確定其化學基團;而吸收譜帶的吸收強度與化學基團的含量有關,可用于進行定量分析和純度鑒定。另外,在化學反應的機理研究上,紅外光譜也發(fā)揮了一定的作用。但其應用最廣的還是未知化合物的結構鑒定。
紅外光譜具有高度的特征性,所以采用與標準化合物的紅外光譜對比的方法來做分析鑒定已很普遍,并已有幾種標準紅外光譜匯集成冊出版,如《薩特勒標準紅外光柵光譜集》收集了十萬多個化合物的紅外光譜圖。近年來又將些這圖譜貯存在計算機中,用來對比和檢索。
分子內部的運動有轉動、振動和電子運動,相應狀態(tài)的能量(狀態(tài)的本征值)是量子化的,因此分子具有轉動能級、振動能級和電子能級。通常,分子處于低能量的基態(tài),從外界吸收能量后,能引起分子能級的躍遷。電子能級的躍遷所需能量最大,大致在1~20 eV(電子伏特)之間。根據量子理論,相鄰能級間的能量差ΔE、電磁輻射的頻率ν、波長λ符合下面的關系式
式中h是普朗克常量,為6.624×10?3?J·s=4.136×10?1? eV·s;c是光速,為2. 998×101? cm/s。應用該公式可以計算出電子躍遷時吸收光的波長。
許多有機分子中的價電子躍遷,須吸收波長在200~1000 nm范圍內的光,恰好落在紫外-可見光區(qū)域。因此,紫外吸收光譜是由于分子中價電子的躍遷而產生的,也可以稱它為電子光譜。
光致變色材料作為一類新型功能材料,有著十分廣闊的應用前景。例如可以作為光信息存儲材料、光開關、光轉換器等,這些材料在機械、電子、紡織、國防等領域都大有作為。光致變色涂料、光致變色玻璃、光致變色墨水的研制和開發(fā),具有現(xiàn)實性的應用意義。除了以上的應用,光致變色材料還可以作為自顯影感光 膠片、全息攝影材料、防護和裝飾材料、印刷版和印刷電路和偽裝材料等。
特別要指出的是,光致變色化合物作為可擦重寫光存儲材料的研究,是近些年來光致變色領域中研究的熱點之一。作為可擦寫光存儲材料的光致變色光存儲介質,應滿足在半導體激光波長范圍具有吸收、非破壞性讀出、良好的熱穩(wěn)定性、優(yōu)良的抗疲勞性和較快的響應速度等條件。